University Researchers Awarded Grant for Non-invasive System to Detect Atrial Fibrillation

Researchers are developing a health app to incorporate into familiar technology such as a tablet or smartphone that will act as a clinical tool to assess atrial fibrillation, a growing heart ailment.

A team of engineers and clinicians at Rochester Institute of Technology and the University of Rochester Medical Center (URMC) received a grant from the National Institutes of Health to develop a non-contact, video recording technology to detect the presence of atrial fibrillation—a heart rhythm disorder that affects more than 2 million Americans yearly.

The URMC received $2 million in funding for the project, and RIT will be granted nearly $800,000 from that funding for its portion of the collaborative project to develop the video algorithm. Co-project leaders are Gill Tsouri, associate professor of electrical engineering in RIT’s Kate Gleason College of Engineering, who is developing the video system algorithm and app, and Jean Philippe Couderc, a biomedical engineer and assistant director of UR’s Heart Research Follow-up Program Lab, who will lead the clinical trials.

The video algorithm is one aspect of a trend in non-invasive medical sensing technologies that can help in assessing health conditions such as the onset, or progression of, atrial fibrillation. The application would be installed on a tablet and run seamlessly in the background while an individual is using the tablet. The software would record the individual’s heart rhythm for a longer monitoring period to capture data related to heart activity—compared to the shorter interval in a medical setting for EEG/ECG monitoring tests. Tablets will be provided to more than 260 patients expected to be enrolled in the study over the next four years.

“We have shown that the technology developed at RIT is reliable enough to be used as a clinical tool in controlled hospital environments,” said Tsouri, who is an expert in signal processing and has developed the video algorithm over several years. “Our purpose now is to make it more accessible and more useful in everyday life. The end goal of all of this is to show that it is a clinically viable approach, which means that seamlessly capturing videos without user participation provides significant data that could be used to deduce their cardiac condition.”

Participants will also wear…

Read the full article from the Source…

Leave a Reply

Your email address will not be published. Required fields are marked *